miércoles, 25 de abril de 2012

lanzamiento parabolico

La composición de un movimiento uniforme y otro uniformemente acelerado resulta un movimiento cuya trayectoria es una parábola.
  • Un MRU horizontal de velocidad vx constante.
  • Un MRUA vertical con velocidad inicial voy hacia arriba.
Este movimiento está estudiado desde la antigüedad. Se recoge en los libros más antiguos de balística para aumentar la precisión en el tiro de un proyectil.
Denominamos proyectil a todo cuerpo que una vez lanzado se mueve solo bajo la aceleración de la gravedad.
1. Disparo de proyectiles. Consideremos un cañón que dispara un obús desde el suelo (y0=0) con cierto ángulo θ menor de 90º  con la horizontal.
Las ecuaciones del movimiento, resultado de la composición de un movimiento uniforme a lo largo del eje X, y de un movimiento uniformemente acelerado a lo largo del eje Y, son las siguientes:
Las ecuaciones paramétricas de la trayectoria son
x=v0·cosθ·t
y=v0
·senθ
·t-gt2/2
Eliminado el tiempo t, obtenemos la ecuación de la trayectoria (ecuación de una parábola)
1.1. Alcance.
El alcance horizontal de cada uno de los proyectiles se obtiene para y=0.
Su valor máximo se obtiene para un ángulo θ =45º, teniendo el mismo valor para  θ =45+a , que para θ =45-a. Por ejemplo, tienen el mismo alcance los proyectiles disparados con ángulos de tiro de 30º y 60º, ya que sen(2·30)=sen(2·60).
1.2. Altura máxima. La altura máxima que alcanza un proyectil se obtiene con vy=0.
Su valor máximo se obtiene para el ángulo de disparo θ =90º.





No hay comentarios:

Publicar un comentario